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WLAN Toolbox Product Description
Simulate, analyze, and test the physical layer of WLAN communications systems

WLAN Toolbox provides standard-compliant functions for the design, simulation, analysis,
and testing of wireless LAN communications systems. The toolbox provides configurable
physical layer waveforms for IEEE® 802.11ax/ac/ad/ah and 802.11b/a/g/n/j/p standards. It
also provides transmitter, channel modeling, and receiver operations, including channel
coding, modulation (OFDM, DSSS, and CCK), spatial stream mapping, channel models
(TGax, TGac, TGah, and TGn), and MIMO receivers.

You can generate multiple types of signals, including high-efficiency (HE), very high
throughput (VHT), high throughput (HT-mixed), and legacy (non-HT), directional multi-
gigabit (DMG), and sub 1 GHz (S1G). You can also perform signal measurements such as
channel power, spectrum mask, and occupied bandwidth, and create test benches for the
end-to-end simulation of WLAN communications links.

The toolbox provides reference designs to help you explore baseband specifications and
study the effects of RF designs and interference sources on system performance. Using
WLAN Toolbox with RF instruments or hardware support packages, you can connect your
transmitter and receiver models to radio devices and verify your designs via over-the-air
transmission and reception.

Key Features
• Standard-compliant physical layer models for IEEE 802.11ax/ac/ad/ah and

802.11b/a/g/n/j/p
• Waveform generation for high-efficiency (HE), very high throughput (VHT), high

throughput (HT-mixed), legacy (non-HT), directional multi-gigabit (DMG), and sub 1
GHz (S1G)

• Channel models, including TGax, TGac, TGah, and TGn
• Channel coding, modulation (OFDM, DSSS, CCK), spatial stream mapping, and MIMO

receivers
• Signal measurements, including channel power, spectrum mask, EVM, PER, and

occupied bandwidth
• Waveform transmission and reception with radio devices and instruments

1 Introduction
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Expected Background
This documentation assumes that you already have background knowledge in the subject
of digital communications, WLAN, and IEEE 802.11™ standards. A standard
communications text, in addition to the books and web links listed in the Selected
Bibliography subsections accompanying many topics can be used to acquire sufficient
background understanding.

Continue reading and try the examples. Then, read subsequent content pertaining to your
specific areas of interest. As you learn which functions you want to use, refer to the online
reference pages for more information.

 Expected Background
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Tutorials

• “Create Configuration Objects” on page 2-2
• “Waveform Generation” on page 2-18
• “WLAN Channel Models” on page 2-40
• “Packet Recovery” on page 2-52

2



Create Configuration Objects
WLAN Toolbox uses value objects to organize properties required for generation of IEEE
802.11 b/a/g/n/j/p/ac/ah/ad/ax waveforms and to recover signal data from such
waveforms. After you create the various configuration objects described here, you can use
them to generate waveforms.

Create Multiuser HE Configuration Object
This example shows how to create multiuser HE configuration objects. It also shows how
to change the default property settings by using dot notation or by overriding the default
settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a multiuser HE configuration object with the AllocationIndex set to 0 and view
the default settings.

hemu = wlanHEMUConfig(0)

hemu = 
  wlanHEMUConfig with properties:

                     RU: {1x9 cell}
                   User: {1x9 cell}
    NumTransmitAntennas: 1
                   STBC: 0
          GuardInterval: 3.2000
              HELTFType: 4
                SIGBMCS: 0
                SIGBDCM: 0
       UplinkIndication: 0
               BSSColor: 0
           SpatialReuse: 0
           TXOPDuration: 127
            HighDoppler: 0

   Read-only properties:
       ChannelBandwidth: 'CBW20'
        AllocationIndex: 0

Modify the defaults to specify four transmit antennas.

2 Tutorials
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hemu.NumTransmitAntennas = 4

hemu = 
  wlanHEMUConfig with properties:

                     RU: {1x9 cell}
                   User: {1x9 cell}
    NumTransmitAntennas: 4
                   STBC: 0
          GuardInterval: 3.2000
              HELTFType: 4
                SIGBMCS: 0
                SIGBDCM: 0
       UplinkIndication: 0
               BSSColor: 0
           SpatialReuse: 0
           TXOPDuration: 127
            HighDoppler: 0

   Read-only properties:
       ChannelBandwidth: 'CBW20'
        AllocationIndex: 0

Create Object and Override Default Property Values

Create a single user HE configuration object with AllocationIndex set to 192. Use
Name,Value pairs to set the spatial reuse to 3.

hemu2 = wlanHEMUConfig(192,'SpatialReuse',3)

hemu2 = 
  wlanHEMUConfig with properties:

                     RU: {[1x1 wlanHEMURU]}
                   User: {[1x1 wlanHEMUUser]}
    NumTransmitAntennas: 1
                   STBC: 0
          GuardInterval: 3.2000
              HELTFType: 4
        SIGBCompression: 1
                SIGBMCS: 0
                SIGBDCM: 0
       UplinkIndication: 0
               BSSColor: 0

 Create Configuration Objects
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           SpatialReuse: 3
           TXOPDuration: 127
            HighDoppler: 0

   Read-only properties:
       ChannelBandwidth: 'CBW20'
        AllocationIndex: 192

Create Single User HE Configuration Object
This example shows how to create single user HE configuration objects. It also shows how
to change the default property settings by using dot notation or by overriding the default
settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a single user HE configuration object and view the default settings.

hesu = wlanHESUConfig

hesu = 
  wlanHESUConfig with properties:

       ChannelBandwidth: 'CBW20'
          ExtendedRange: 0
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
    PreHESpatialMapping: 0
                   STBC: 0
                    MCS: 0
                    DCM: 0
          ChannelCoding: 'LDPC'
             APEPLength: 100
          GuardInterval: 3.2000
              HELTFType: 4
       UplinkIndication: 0
               BSSColor: 0
           SpatialReuse: 0
           TXOPDuration: 127
            HighDoppler: 0

2 Tutorials
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Modify the defaults to specify an four transmit antennas.

hesu.NumTransmitAntennas = 4 

hesu = 
  wlanHESUConfig with properties:

       ChannelBandwidth: 'CBW20'
          ExtendedRange: 0
    NumTransmitAntennas: 4
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
    PreHESpatialMapping: 0
                   STBC: 0
                    MCS: 0
                    DCM: 0
          ChannelCoding: 'LDPC'
             APEPLength: 100
          GuardInterval: 3.2000
              HELTFType: 4
       UplinkIndication: 0
               BSSColor: 0
           SpatialReuse: 0
           TXOPDuration: 127
            HighDoppler: 0

Create Object and Override Default Property Values

Create a single user HE configuration object. Use Name,Value pairs to set the
modulation and coding scheme to 9 and to enable space-time block coding.

hesu2 = wlanHESUConfig('MCS',9,'STBC',true)

hesu2 = 
  wlanHESUConfig with properties:

       ChannelBandwidth: 'CBW20'
          ExtendedRange: 0
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
    PreHESpatialMapping: 0
                   STBC: 1
                    MCS: 9

 Create Configuration Objects
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                    DCM: 0
          ChannelCoding: 'LDPC'
             APEPLength: 100
          GuardInterval: 3.2000
              HELTFType: 4
       UplinkIndication: 0
               BSSColor: 0
           SpatialReuse: 0
           TXOPDuration: 127
            HighDoppler: 0

Create DMG Configuration Object
This example shows how to create DMG configuration objects. It also shows how to
change the default property settings by using dot notation or by overriding the default
settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a DMG configuration object and view the default settings. By default, the
configuration object creates properties to model the DMG control PHY.

dmg = wlanDMGConfig

dmg = 
  wlanDMGConfig with properties:

                        MCS: '0'
             TrainingLength: 0
                 PSDULength: 1000
    ScramblerInitialization: 2
                 Turnaround: 0

Model the SC PHY by modifying the defaults to specify an MCS of 5.

dmg.MCS = 5

dmg = 
  wlanDMGConfig with properties:

                        MCS: 5
             TrainingLength: 0

2 Tutorials
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                 PSDULength: 1000
    ScramblerInitialization: 2
             AggregatedMPDU: 0
                   LastRSSI: 0
                 Turnaround: 0

For the various configurations, different sets of configuration fields apply and are visible.
By changing the MCS setting from 0 to 5, we see that the configured object includes the
AggregationMPDU and LastRSSI fields.

Create Object and Override Default Property Values

Create a DMG configuration object for OFDM PHY. Use Name,Value pairs to set the MCS
to 14 and specify four training fields.

dmg2 = wlanDMGConfig('MCS',14,'TrainingLength',4)

dmg2 = 
  wlanDMGConfig with properties:

                        MCS: 14
             TrainingLength: 4
                 PacketType: 'TRN-R'
        BeamTrackingRequest: 0
            TonePairingType: 'Static'
                 PSDULength: 1000
    ScramblerInitialization: 2
             AggregatedMPDU: 0
                   LastRSSI: 0
                 Turnaround: 0

Create S1G Configuration Object
This example shows how to create S1G configuration objects. It also shows how to change
the default property settings by using dot notation or by overriding the default settings by
using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a S1G configuration object and view the default settings.

s1g = wlanS1GConfig

 Create Configuration Objects
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s1g = 
  wlanS1GConfig with properties:

       ChannelBandwidth: 'CBW2'
               Preamble: 'Short'
               NumUsers: 1
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 0
             APEPLength: 256
          GuardInterval: 'Long'
             PartialAID: 37
       UplinkIndication: 0
                  Color: 0
        TravelingPilots: 0
     ResponseIndication: 'None'
     RecommendSmoothing: 1

   Read-only properties:
          ChannelCoding: 'BCC'
             PSDULength: 258

Modify the defaults to specify an 8 MHz channel bandwidth, three transmit antennas, and
three space-time streams.

s1g.ChannelBandwidth = 'CBW8';
s1g.NumTransmitAntennas = 3;
s1g.NumSpaceTimeStreams = 3

s1g = 
  wlanS1GConfig with properties:

       ChannelBandwidth: 'CBW8'
               Preamble: 'Short'
               NumUsers: 1
    NumTransmitAntennas: 3
    NumSpaceTimeStreams: 3
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 0
             APEPLength: 256
          GuardInterval: 'Long'

2 Tutorials
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             PartialAID: 37
       UplinkIndication: 0
                  Color: 0
        TravelingPilots: 0
     ResponseIndication: 'None'
     RecommendSmoothing: 1

   Read-only properties:
          ChannelCoding: 'BCC'
             PSDULength: 261

Create Object and Override Default Property Values

Create a S1G configuration object. Use Name,Value pairs to set the MCS to 5 and to
specify two transmit antennas.

s1g2 = wlanS1GConfig('MCS',5,'NumTransmitAntennas',2)

s1g2 = 
  wlanS1GConfig with properties:

       ChannelBandwidth: 'CBW2'
               Preamble: 'Short'
               NumUsers: 1
    NumTransmitAntennas: 2
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 5
             APEPLength: 256
          GuardInterval: 'Long'
             PartialAID: 37
       UplinkIndication: 0
                  Color: 0
        TravelingPilots: 0
     ResponseIndication: 'None'
     RecommendSmoothing: 1

   Read-only properties:
          ChannelCoding: 'BCC'
             PSDULength: 258

 Create Configuration Objects
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As currently configured, this object is not a valid S1G configuration. Validation of the
object occurs when it is the input to a calling function. When spatial mapping is
'Direct', the number of space-time streams must equal the number of transmit
antennas. Changing the number of space time streams to match the number of transmit
antennas is one option to make the configuration of the object valid.

s1g2.NumSpaceTimeStreams = 2

s1g2 = 
  wlanS1GConfig with properties:

       ChannelBandwidth: 'CBW2'
               Preamble: 'Short'
               NumUsers: 1
    NumTransmitAntennas: 2
    NumSpaceTimeStreams: 2
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 5
             APEPLength: 256
          GuardInterval: 'Long'
             PartialAID: 37
       UplinkIndication: 0
                  Color: 0
        TravelingPilots: 0
     ResponseIndication: 'None'
     RecommendSmoothing: 1

   Read-only properties:
          ChannelCoding: 'BCC'
             PSDULength: 258

Create VHT Configuration Object
This example shows how to create VHT configuration objects. It also shows how to
change the default property settings by using dot notation or by overriding the default
settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a VHT configuration object and view the default settings.

vht = wlanVHTConfig

2 Tutorials
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vht = 
  wlanVHTConfig with properties:

       ChannelBandwidth: 'CBW80'
               NumUsers: 1
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 0
          ChannelCoding: 'BCC'
             APEPLength: 1024
          GuardInterval: 'Long'
                GroupID: 63
             PartialAID: 275

   Read-only properties:
             PSDULength: 1035

Modify the defaults to specify a 160 MHz channel bandwidth, two transmit antennas, and
two space-time streams.

vht.ChannelBandwidth = 'CBW160';
vht.NumTransmitAntennas = 2;
vht.NumSpaceTimeStreams = 2

vht = 
  wlanVHTConfig with properties:

       ChannelBandwidth: 'CBW160'
               NumUsers: 1
    NumTransmitAntennas: 2
    NumSpaceTimeStreams: 2
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 0
          ChannelCoding: 'BCC'
             APEPLength: 1024
          GuardInterval: 'Long'
                GroupID: 63
             PartialAID: 275

   Read-only properties:

 Create Configuration Objects
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             PSDULength: 1050

Create Object and Override Default Property Values

Create a VHT configuration object. Use Name,Value pairs to set the MCS to 7 and to
specify two transmit antennas.

vht2 = wlanVHTConfig('MCS',7,'NumTransmitAntennas',2)

vht2 = 
  wlanVHTConfig with properties:

       ChannelBandwidth: 'CBW80'
               NumUsers: 1
    NumTransmitAntennas: 2
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 7
          ChannelCoding: 'BCC'
             APEPLength: 1024
          GuardInterval: 'Long'
                GroupID: 63
             PartialAID: 275

   Read-only properties:
             PSDULength: 1167

As currently configured, this object is not a valid VHT configuration. Validation of the
object occurs when it is the input to a calling function. When spatial mapping is Direct,
the number of space-time streams must equal the number of transmit antennas. Changing
the number of space time streams to match the number of transmit antennas is one
option to make the configuration of the object valid.

vht2.NumSpaceTimeStreams = 2

vht2 = 
  wlanVHTConfig with properties:

       ChannelBandwidth: 'CBW80'
               NumUsers: 1
    NumTransmitAntennas: 2
    NumSpaceTimeStreams: 2

2 Tutorials
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         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 7
          ChannelCoding: 'BCC'
             APEPLength: 1024
          GuardInterval: 'Long'
                GroupID: 63
             PartialAID: 275

   Read-only properties:
             PSDULength: 1166

Create HT Configuration Object
This example shows how to create HT configuration objects. It also shows how to change
the default property settings by using dot notation or by overriding the default settings by
using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create an HT configuration object and view the default settings.

ht = wlanHTConfig

ht = 
  wlanHTConfig with properties:

       ChannelBandwidth: 'CBW20'
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                    MCS: 0
          GuardInterval: 'Long'
          ChannelCoding: 'BCC'
             PSDULength: 1024
         AggregatedMPDU: 0
     RecommendSmoothing: 1

Modify the defaults to specify three transmit antennas and two space-time streams.

ht.NumTransmitAntennas = 3;
ht.NumSpaceTimeStreams = 2

 Create Configuration Objects
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ht = 
  wlanHTConfig with properties:

       ChannelBandwidth: 'CBW20'
    NumTransmitAntennas: 3
    NumSpaceTimeStreams: 2
    NumExtensionStreams: 0
         SpatialMapping: 'Direct'
                    MCS: 0
          GuardInterval: 'Long'
          ChannelCoding: 'BCC'
             PSDULength: 1024
         AggregatedMPDU: 0
     RecommendSmoothing: 1

As the settings of the object are modified, the set of properties that apply for the current
configuration are shown. When the number of transmit antennas is more than the number
of space-time streams, the number of extension streams property applies and is shown.
Also, as currently configured, this object is not a valid HT configuration because the
default 'Direct' spatial mapping requires the number of space-time streams to equal
the number of transmit antennas. Validation of the object occurs when it is input to a
calling function.

Create Object and Override Default Property Values

Create an HT configuration object. Use Name,Value pairs to define a sounding packet by
specifying PSDULength = 0, and set the number of transmit antennas and space-time
streams to 3.

ht2 = wlanHTConfig('PSDULength',0,'NumTransmitAntennas',3,'NumSpaceTimeStreams',3)

ht2 = 
  wlanHTConfig with properties:

       ChannelBandwidth: 'CBW20'
    NumTransmitAntennas: 3
    NumSpaceTimeStreams: 3
         SpatialMapping: 'Direct'
                    MCS: 0
          GuardInterval: 'Long'
          ChannelCoding: 'BCC'
             PSDULength: 0
         AggregatedMPDU: 0

2 Tutorials
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     RecommendSmoothing: 1

Create Non-HT Configuration Object
This example shows how to create non-HT configuration objects. It also shows how to
change the default property settings by using dot notation or by overriding the default
settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a non-HT configuration object and view the default settings.

nonHT = wlanNonHTConfig

nonHT = 
  wlanNonHTConfig with properties:

             Modulation: 'OFDM'
       ChannelBandwidth: 'CBW20'
                    MCS: 0
             PSDULength: 1000
    NumTransmitAntennas: 1

Modify the defaults to specify four transmit antennas and to set the MCS to 3.

nonHT.NumTransmitAntennas = 4;
nonHT.MCS = 3

nonHT = 
  wlanNonHTConfig with properties:

             Modulation: 'OFDM'
       ChannelBandwidth: 'CBW20'
                    MCS: 3
             PSDULength: 1000
    NumTransmitAntennas: 4

Create Object and Override Default Property Values

Create a non-HT configuration object. Use a Name,Value pair change the modulation
scheme to DSSS.

 Create Configuration Objects
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nonHT2 = wlanNonHTConfig('Modulation','DSSS')

nonHT2 = 
  wlanNonHTConfig with properties:

      Modulation: 'DSSS'
        DataRate: '1Mbps'
    LockedClocks: 1
      PSDULength: 1000

For the DSSS modulation scheme, a different set of properties apply and are shown for
the non-HT configuration object.

Create Recovery Configuration Object
Recovery configuration objects are used to specify receiver algorithms and settings to use
for recovery. This example shows how to create recovery configuration objects. It also
shows how to change the default property settings by using dot notation or by overriding
the default settings by using Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a recovery configuration object and view default settings.

cfgRec = wlanRecoveryConfig

cfgRec = 
  wlanRecoveryConfig with properties:

             OFDMSymbolOffset: 0.7500
           EqualizationMethod: 'MMSE'
           PilotPhaseTracking: 'PreEQ'
    MaximumLDPCIterationCount: 12
             EarlyTermination: 0

Modify the default to specify no pilot phase tracking.

cfgRec.PilotPhaseTracking = 'None'

cfgRec = 
  wlanRecoveryConfig with properties:

2 Tutorials
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             OFDMSymbolOffset: 0.7500
           EqualizationMethod: 'MMSE'
           PilotPhaseTracking: 'None'
    MaximumLDPCIterationCount: 12
             EarlyTermination: 0

Create Object and Override Default Property Values

Use Name,Value pairs to create a recovery configuration object to perform zero-forcing
equalization, using an OFDM symbol sampling offset of 0.6 in the recovery process.

cfgRec = wlanRecoveryConfig('OFDMSymbolOffset',0.6,'EqualizationMethod','ZF')

cfgRec = 
  wlanRecoveryConfig with properties:

             OFDMSymbolOffset: 0.6000
           EqualizationMethod: 'ZF'
           PilotPhaseTracking: 'PreEQ'
    MaximumLDPCIterationCount: 12
             EarlyTermination: 0

See Also
Properties
wlanDMGConfig Properties | wlanHEMUConfig Properties | wlanHESUConfig Properties |
wlanHTConfig | wlanNonHTConfig | wlanRecoveryConfig | wlanS1GConfig Properties |
wlanVHTConfig

Related Examples
• “Waveform Generation” on page 2-18
• “What Is WLAN?” on page 3-2

 See Also
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Waveform Generation
After you create the necessary configuration objects described in “Create Configuration
Objects” on page 2-2, you can use the objects to generate the desired WLAN format
waveform.

The IEEE 802.111 standards define a physical layer conformance procedure (PLCP)
protocol data unit (PPDU) as the transmission unit at the physical layer. For a detailed
description of the PPDU field structures for each transmission format, see “WLAN Packet
Structure”.

HE Format PPDU

In HE, there are four transmission modes supported: single user, single user extended
range, trigger-based, and multi-user.

1. IEEE Std 802.11-2016 Adapted and reprinted with permission from IEEE. Copyright IEEE 2016. All rights
reserved.
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DMG Format PPDU

In DMG, there are three physical layer (PHY) modulation schemes supported: control,
single carrier, and OFDM.
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S1G Format PPDU

In S1G, there are three transmission modes: S1G_LONG, S1G_SHORT, and S1G_1M. Each
transmission mode has a specific PPDU preamble structure.
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VHT, HT, and non-HT Format PPDUs

The VHT, HT, and non-HT PPDU formats consist of preamble and data fields.
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Use WLAN Toolbox functions to generate a full PPDU waveform or individual PPDU field
waveforms.

Generate a full PPDU waveform using the wlanWaveformGenerator function to
populate all PPDU fields (preamble and data) in a single call. wlanWaveformGenerator
accepts a bit stream, a format configuration object (wlanHESUConfig,
wlanHEMUConfig, wlanDMGConfig, wlanS1GConfig wlanVHTConfig,
wlanHTConfig, or wlanNonHTConfig) and Name,Value pairs to configure the
waveform.

Generate WLAN Waveforms
Generate HE, DMG, S1G, VHT, HT-mixed, and non-HT format waveforms. Vary
configuration parameters and plot the waveforms to highlight differences in waveforms
and sample rates.
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In each section of this example, you:

• Create a format-specific configuration object.
• Create a vector of information bits for the packet data payload. Internally, the

wlanWaveformGeneration function loops through the bits vector as many times as
needed to generate the specified number of packets.

• Generate the format-specific waveform and plot it. For plotting, because no filtering is
applied to the waveform and the oversampling rate is 1, set the sampling rate equal to
the channel bandwidth.

Generate Single User HE Format Waveform

Create an single user HE configuration object and waveform. Using Name,Value pairs,
specify 4 packets and 15 microseconds of idle time. Display the configuration object and
inspect its properties and settings.

hesu = wlanHESUConfig
bits = [1;0;0;1;1];
hesuWaveform = wlanWaveformGenerator(bits,hesu, ...
    'NumPackets',4,'IdleTime',15e-6);

hesu = 

  wlanHESUConfig with properties:

       ChannelBandwidth: 'CBW20'
          ExtendedRange: 0
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
    PreHESpatialMapping: 0
                   STBC: 0
                    MCS: 0
                    DCM: 0
          ChannelCoding: 'LDPC'
             APEPLength: 100
          GuardInterval: 3.2000
              HELTFType: 4
       UplinkIndication: 0
               BSSColor: 0
           SpatialReuse: 0
           TXOPDuration: 127
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            HighDoppler: 0

Plot the single user HE format waveform, scaling the x-axis relative to the channel
bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(hesuWaveform)-1]/fs)*1e6;
plot(time,abs(hesuWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

The plot shows four single user HE format packets, with each packet separated by 15
microseconds of idle time.
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Generate Multiuser HE Format Waveform

Create an multiuser HE configuration object and waveform. Using Name,Value pairs,
specify 3 packets and 30 microseconds of idle time. Display the configuration object and
inspect its properties and settings.

hemu = wlanHEMUConfig(192)
bits = [1;0;0;1;1];
hemuWaveform = wlanWaveformGenerator(bits,hemu, ...
    'NumPackets',3,'IdleTime',30e-6);

hemu = 

  wlanHEMUConfig with properties:

                     RU: {[1x1 wlanHEMURU]}
                   User: {[1x1 wlanHEMUUser]}
    NumTransmitAntennas: 1
                   STBC: 0
          GuardInterval: 3.2000
              HELTFType: 4
        SIGBCompression: 1
                SIGBMCS: 0
                SIGBDCM: 0
       UplinkIndication: 0
               BSSColor: 0
           SpatialReuse: 0
           TXOPDuration: 127
            HighDoppler: 0

   Read-only properties:
       ChannelBandwidth: 'CBW20'
        AllocationIndex: 192

Plot the multiuser HE format waveform, scaling the x-axis relative to the channel
bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(hemuWaveform)-1]/fs)*1e6;
plot(time,abs(hemuWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');
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The plot shows three multiuser HE format packets, with each packet separated by 30
microseconds of idle time.

Generate DMG Format Waveform

Create a DMG configuration object and waveform. Using Name,Value pairs, assign 13
for the MCS which specifies an OFDM waveform, 4 packets, and 2 microseconds of idle
time. Display the configuration object and inspect its properties and settings.

dmg = wlanDMGConfig('MCS',13)
bits = [1;0;0;1;1];
dmgWaveform = wlanWaveformGenerator(bits,dmg, ...
    'NumPackets',4,'IdleTime',2e-6);
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dmg = 

  wlanDMGConfig with properties:

                        MCS: 13
             TrainingLength: 0
            TonePairingType: 'Static'
                 PSDULength: 1000
    ScramblerInitialization: 2
             AggregatedMPDU: 0
                   LastRSSI: 0
                 Turnaround: 0

Plot the DMG format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 2640e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(dmgWaveform)-1]/fs)*1e6;
plot(time,abs(dmgWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');
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The plot shows four DMG format packets, with each packet separated by 2 microseconds
of idle time.

Generate S1G Format Waveform

Create an S1G configuration object and waveform. Using Name,Value pairs, specify 4
MHz channel bandwidth, 3 packets, and 15 microseconds of idle time. Display the
configuration object and inspect its properties and settings.

s1g = wlanS1GConfig('ChannelBandwidth','CBW4')
bits = [1;0;0;1;1];

s1gWaveform = wlanWaveformGenerator(bits,s1g, ...
    'NumPackets',3,'IdleTime',15e-6);
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s1g = 

  wlanS1GConfig with properties:

       ChannelBandwidth: 'CBW4'
               Preamble: 'Short'
               NumUsers: 1
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 0
             APEPLength: 256
          GuardInterval: 'Long'
             PartialAID: 37
       UplinkIndication: 0
                  Color: 0
        TravelingPilots: 0
     ResponseIndication: 'None'
     RecommendSmoothing: 1

   Read-only properties:
          ChannelCoding: 'BCC'
             PSDULength: 261

Plot the S1G format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 4e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(s1gWaveform)-1]/fs)*1e6;
plot(time,abs(s1gWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');
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The plot shows three S1G format packets, with each packet separated by 15
microseconds of idle time.

Generate VHT Format Waveform

Create a VHT configuration object and waveform. Using Name,Value pairs, specify 5
packets and 20 microseconds of idle time. Display the configuration object and inspect its
properties and settings.

vht = wlanVHTConfig
bits = [1;0;0;1;1];
vhtWaveform = wlanWaveformGenerator(bits,vht, ...
    'NumPackets',5,'IdleTime',20e-6);
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vht = 

  wlanVHTConfig with properties:

       ChannelBandwidth: 'CBW80'
               NumUsers: 1
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                   STBC: 0
                    MCS: 0
          ChannelCoding: 'BCC'
             APEPLength: 1024
          GuardInterval: 'Long'
                GroupID: 63
             PartialAID: 275

   Read-only properties:
             PSDULength: 1035

Plot the VHT format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 80e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(vhtWaveform)-1]/fs)*1e6;
plot(time,abs(vhtWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');
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The plot shows five VHT format packets, with each packet separated by 20 microseconds
of idle time.

Generate HT Format Waveform

Create an HT configuration object and waveform. Using Name,Value pairs, specify 5
packets and 30 microseconds of idle time. Display the configuration object and inspect its
properties and settings.

ht = wlanHTConfig
bits = [1;0;0;1;1];
htWaveform = wlanWaveformGenerator(bits,ht, ...
    'NumPackets',5,'IdleTime',30e-6);
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ht = 

  wlanHTConfig with properties:

       ChannelBandwidth: 'CBW20'
    NumTransmitAntennas: 1
    NumSpaceTimeStreams: 1
         SpatialMapping: 'Direct'
                    MCS: 0
          GuardInterval: 'Long'
          ChannelCoding: 'BCC'
             PSDULength: 1024
         AggregatedMPDU: 0
     RecommendSmoothing: 1

Plot the HT format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(htWaveform)-1]/fs)*1e6;
plot(time,abs(htWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

 Waveform Generation

2-33



The plot shows five HT format packets, with 30 microseconds of idle time separating each
packet.

Generate Non-HT Format DSSS Waveform

Create a non-HT configuration object and generate a non-HT format DSSS waveform with
a 2 Mbps data rate. Using Name,Value pairs, specify 2 packets and 5 microseconds of
idle time. Display the configuration object and inspect its properties and settings.

nht = wlanNonHTConfig('Modulation','DSSS','DataRate','2Mbps')
bits = [1;0;0;1;1];
nhtDSSSWaveform = wlanWaveformGenerator(bits,nht, ...
    'NumPackets',2,'IdleTime',5e-6);
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nht = 

  wlanNonHTConfig with properties:

      Modulation: 'DSSS'
        DataRate: '2Mbps'
        Preamble: 'Long'
    LockedClocks: 1
      PSDULength: 1000

Plot the non-HT Format DSSS waveform, scaling the x-axis relative to the channel
bandwidth. As specified in IEEE 802.11-2012, Section 17.1.1, the channel bandwidth is 11
MHz for DSSS.

fs = 11e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(nhtDSSSWaveform)-1]/fs)*1e6;
plot(time,real(nhtDSSSWaveform),'.')
xlabel ('Time (microseconds)');
ylabel('Re[nhtDSSSWaveform]');
axis([8190,8200,-1.1,1.1])
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Sample values in DSSS modulation are –1 or 1. The plot shows the real values for a
section of the waveform that includes the tail end of the first packet, the 5 microsecond
idle period, and the beginning of the second packet for the non-HT format DSSS
modulated waveform.

Generate Non-HT Format OFDM Waveform

Create a non-HT configuration object and waveform. Using Name,Value pairs, specify 4
packets and 45 microseconds of idle time. Display the configuration object and inspect its
properties and settings.

nht = wlanNonHTConfig
bits = [1;0;0;1;1];
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nhtWaveform = wlanWaveformGenerator(bits,nht, ...
    'NumPackets',4,'IdleTime',45e-6);

nht = 

  wlanNonHTConfig with properties:

             Modulation: 'OFDM'
       ChannelBandwidth: 'CBW20'
                    MCS: 0
             PSDULength: 1000
    NumTransmitAntennas: 1

Plot the non-HT format OFDM waveform, scaling the x-axis relative to the channel
bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ([0:length(nhtWaveform)-1]/fs)*1e6;
plot(time,abs(nhtWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');
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The plot shows four non-HT format OFDM modulated packets, with 45 microseconds of
idle time separating each packet.

Waveforms of Individual PPDU Fields
You can also create a VHT, HT, or non-HT PPDU waveform by generating and
concatenating waveforms for individual PPDU fields.
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PPDU Format Individual Field Functions
VHT wlanLSTF, wlanLLTF, wlanLSIG,

wlanVHTSTF, wlanVHTLTF, wlanVHTSIGA,
wlanVHTSIGB, and wlanVHTData

HT wlanLSTF, wlanLLTF, wlanLSIG,
wlanHTSTF, wlanHTLTF, wlanHTSIG, and
wlanHTData

Non-HT for OFDM modulation wlanLSTF, wlanLLTF, wlanLSIG, and
wlanNonHTData

Generating individual PPDU field waveforms, enables you to experiment with the
individual fields without generating an entire PPDU.

See Also
wlanHTConfig | wlanNonHTConfig | wlanRecoveryConfig | wlanVHTConfig

More About
• “Create Configuration Objects” on page 2-2
• “WLAN Channel Models” on page 2-40
• “What Is WLAN?” on page 3-2
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WLAN Channel Models
This example demonstrates passing WLAN S1G, VHT, HT, and non-HT format waveforms
through appropriate fading channel models. When simulating a WLAN communications
link, viable options for channel modeling include the TGah,TGn and TGac models from
WLAN Toolbox™ and the AWGN and 802.11g models from Communications Toolbox™. In
this example, it is sufficient to set the channel model sampling frequency to match the
channel bandwidth because no front-end filtering is applied to the signal and the
oversampling rate is 1.

In each section of this example, you:

• Create a waveform.
• Transmit it through a fading channel with noise added.
• Use a spectrum analyzer to display the waveform before and after it passes through

the noisy fading channel.

Pass S1G Waveform Through TGah SISO Channel

Create a bit stream to use when generating the WLAN S1G format waveform.

bits = randi([0 1],1000,1);

Create a S1G configuration object, and generate an 2 MHz S1G waveform. Calculate the
signal power.

s1g = wlanS1GConfig;
preChS1G = wlanWaveformGenerator(bits,s1g);

Pass the signal through a TGah SISO channel with AWGN noise (SNR=10 dB) and a
receiver with a 9 dB noise figure. Recall that the channel model sampling frequency is
equal to the bandwidth in this example. Set parameters using Name,Value pairs.

Create a TGah channel object. Set the channel model sampling frequency and channel
bandwidth, enable path loss and shadowing, and use the Model-D delay profile.

cbw = s1g.ChannelBandwidth;
fs = 2e6; % Channel model sampling frequency equals the channel bandwidth
tgahChan = wlanTGahChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
    'LargeScaleFadingEffect','Pathloss and shadowing', ...
    'DelayProfile','Model-D');
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Create an AWGN Channel object with SNR = 10 dB. Determine the signal power in Watts,
accounting for the TGah large scale fading pathloss.

preChSigPwr_dB = 10*log10(mean(abs(preChS1G)));
sigPwr = 10^((preChSigPwr_dB-tgahChan.info.Pathloss)/10);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
    'SNR',10,'SignalPower', sigPwr);

Pass the S1G waveform through a SISO TGah channel and add the AWGN channel noise.

postChS1G = chNoise(tgahChan(preChS1G));

Create another AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

Pass the S1G waveform through the receiver. Choose an appropriate noise variance, nVar,
to set the receiver noise level. Here, the receiver noise level is based on the noise
variance for a receiver with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's
constant, T is the ambient temperature of 290 K, B is the bandwidth, and F is the receiver
noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxS1G = rxNoise(postChS1G,nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '2 MHz S1G Waveform Before and After TGah Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
    'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChS1G,rxS1G])
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Path loss accounts for the roughly 50 dB of separation between the waveform before and
after it passes through the TGah channel. The path loss results from the default
transmitter-to-receiver distance of 3 meters, and from shadowing effects. The signal level
variation shows the frequency selectivity of the delay profile across the frequency
spectrum.

Pass VHT Waveform Through TGac SISO Channel

Create a bit stream to use when generating the WLAN VHT format waveform.

bits = randi([0 1],1000,1);

Create a VHT configuration object, and generate an 80 MHz VHT waveform. Calculate the
signal power.
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vht = wlanVHTConfig;
preChVHT = wlanWaveformGenerator(bits,vht);

Pass the signal through a TGac SISO channel with AWGN noise (SNR=10 dB) and a
receiver with a 9 dB noise figure. Recall that the channel model sampling frequency is
equal to the bandwidth in this example. Set parameters using Name,Value pairs.

Create a TGac channel object. Set the channel model sampling frequency and channel
bandwidth, enable path loss and shadowing, and use the Model-D delay profile.

cbw = vht.ChannelBandwidth;
fs = 80e6; % Channel model sampling frequency equals the channel bandwidth
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
    'LargeScaleFadingEffect','Pathloss and shadowing', ...
    'DelayProfile','Model-D');

Create an AWGN Channel object with SNR = 10 dB. Determine the signal power in Watts,
accounting for the TGac large scale fading pathloss.

preChSigPwr_dB = 10*log10(mean(abs(preChVHT)));
sigPwr = 10^((preChSigPwr_dB-tgacChan.info.Pathloss)/10);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
    'SNR',10,'SignalPower', sigPwr);

Pass the VHT waveform through a SISO TGac channel and add the AWGN channel noise.

postChVHT = chNoise(tgacChan(preChVHT));

Create another AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

Pass the VHT waveform through the receiver. Choose an appropriate noise variance, nVar,
to set the receiver noise level. Here, the receiver noise level is based on the noise
variance for a receiver with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's
constant, T is the ambient temperature of 290 K, B is the bandwidth, and F is the receiver
noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxVHT = rxNoise(postChVHT,nVar);
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Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '80 MHz VHT Waveform Before and After TGac Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
    'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChVHT,rxVHT])

Path loss accounts for the roughly 50 to 60 dB of separation between the waveform before
and after it passes through the TGac channel. The path loss results from the default
transmitter-to-receiver distance of 3 meters, and from shadowing effects. The signal level
variation shows the frequency selectivity of the delay profile across the frequency
spectrum.
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Pass HT Waveform Through TGn SISO Channel

Create a bit stream to use when generating the WLAN HT format waveform.

bits = randi([0 1],1000,1);

Create an HT configuration object, and generate an HT waveform.

ht = wlanHTConfig;
preChHT = wlanWaveformGenerator(bits,ht);

Pass the signal through a TGn SISO channel with AWGN noise (SNR=10 dB) and a
receiver with a 9 dB noise figure. Recall that the channel model sampling frequency is
equal to the bandwidth in this example. Set parameters using Name,Value pairs.

Create a TGn channel object. Set the channel model sampling frequency and channel
bandwidth, enable path loss and shadowing, and use the Model-F delay profile.

fs = 20e6; % Channel model sampling frequency equals the channel bandwidth
tgnChan = wlanTGnChannel('SampleRate',fs,'LargeScaleFadingEffect', ...
    'Pathloss and shadowing','DelayProfile','Model-F');

Pass the HT waveform through a TGn channel. Use the awgn function to add channel
noise at an SNR level of 10 dB.

postChHT = awgn(tgnChan(preChHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

Pass the HT waveform through the receiver. Choose an appropriate noise variance, nVar,
for setting the receiver noise level. Here, the receiver noise is based on the noise variance
for a receiver with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T
is the ambient temperature of 290 K, B is the bandwidth, and F is the receiver noise
figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxHT = rxNoise(postChHT, nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.
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title = '20 MHz HT Waveform Before and After TGn Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
    'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChHT,postChHT])

Path loss accounts for the roughly 50 to 60 dB of separation between the waveform before
and after it passes through the TGn channel. The path loss results from the default
transmitter-to-receiver distance of 3 meters, and from shadowing effects. The signal level
variation shows the frequency selectivity of the delay profile across the frequency
spectrum.

Pass Non-HT Waveform Through 802.11g Channel

Create a bit stream to use when generating the WLAN Non-HT format waveform.
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bits = randi([0 1],1000,1);

Create a non-HT configuration object, and generate a non-HT waveform.

nht = wlanNonHTConfig;
preChNonHT = wlanWaveformGenerator(bits,nht);

Calculate free-space path loss for a transmitter-to-receiver separation distance of 3
meters. Create an 802.11g channel object with a 3 Hz maximum Doppler shift and an
RMS path delay equal to two times the sample time. Recall that the channel model
sampling frequency is equal to the bandwidth in this example. Create an AWGN channel
object.

dist = 3;
fc = 2.4e9;
pathLoss = 10^(-log10(4*pi*dist*(fc/3e8)));
fs = 20e6; % Channel model sampling frequency equals the channel bandwidth
maxDoppShift = 3;
trms = 2/fs;
ch802 = comm.RayleighChannel('SampleRate',fs,'MaximumDopplerShift',maxDoppShift,'PathDelays',trms);

Pass the non-HT waveform through an 802.11g channel. Use the awgn function to add
channel noise at an SNR level of 10 dB.

postChNonHT = awgn(ch802(preChNonHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

Pass the non-HT waveform through the receiver. Choose an appropriate noise variance,
nVar, for setting the receiver noise level. Here, the receiver noise is based on the noise
variance for a receiver with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's
constant, T is the ambient temperature of 290 K, B is the bandwidth, and F is the receiver
noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxNonHT = rxNoise(postChNonHT, nVar)* pathLoss;

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.
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title = '20 MHz Non-HT Waveform Before and After 802.11g Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
    'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChNonHT,rxNonHT])

Free-space path loss accounts for the roughly 50 to 60 dB of separation between the
waveform before and after it passes through the 802.11g channel. The path loss results
from the specified transmitter-to-receiver distance of 3 meters, and from shadowing
effects. The signal level variation shows the frequency selectivity of the delay profile
across the frequency spectrum.

Pass VHT Waveform Through TGac MIMO Channel

Create a bit stream to use when generating the WLAN VHT format waveform.
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bits = randi([0 1],1000,1);

Create a multi-user VHT configuration object, and generate a VHT waveform. Set the
number of transmit antennas to four. Set the number of space-time streams and the
number of receive antennas to 3. Because the number of transmit antennas is not equal to
the number of space-time streams, the spatial mapping is not direct. Set the spatial
mapping to Hadamard.

ntx = 4;
nsts = 3;
nrx = 3;
vht = wlanVHTConfig('NumTransmitAntennas',ntx, ...
    'NumSpaceTimeStreams',nsts,'SpatialMapping','Hadamard');
preChVHT = wlanWaveformGenerator(bits,vht);

Create TGac MIMO channel and AWGN channel objects. Recall that the channel model
sampling frequency is equal to the bandwidth in this example. Disable large-scale fading
effects.

cbw = vht.ChannelBandwidth;
fs = 80e6; % Channel model sampling frequency equals the channel bandwidth
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw,...
    'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx);
tgacChan.LargeScaleFadingEffect = 'None';

Pass the VHT waveform through a TGac channel. Use the awgn function to add channel
noise at an SNR level of 10 dB.

postChVHT = awgn(tgacChan(preChVHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

Pass the multi-user VHT waveform through a noisy TGac channel. Choose an appropriate
noise variance, nVar, for setting the AWGN level. Here, the AWGN level is based on the
noise variance for a receiver with a 9 dB noise figure. nVar = kTBF, where k is
Boltzmann's constant, T is the ambient temperature of 290 K, B is the bandwidth, and F is
the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxVHT = rxNoise(postChVHT,nVar);
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Display a spectrum analyzer showing the multiple streams after the channel effects have
been added. Use SpectralAverages = 10 to reduce noise in the plotted signals.

title = '80 MHz VHT 4x3 MIMO Waveform After TGac Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
    'SpectralAverages',10,'Title',title,'ChannelNames', ...
    {'RX1','RX2','RX3'});
saScope(rxVHT)

The overlaid signals show the TGac channel variation between the received streams.
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See Also
wlanHTConfig | wlanNonHTConfig | wlanRecoveryConfig | wlanTGacChannel |
wlanTGnChannel | wlanVHTConfig

Related Examples
• “Waveform Generation” on page 2-18
• “Packet Recovery” on page 2-52
• “What Is WLAN?” on page 3-2
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Packet Recovery
Received packets are degraded due to radio and channel impairments. Recovery of packet
contents requires symbol timing and frequency offset correction, channel estimation, and
demodulation and recovery of the preamble and payload. WLAN Toolbox functions
perform these operations on VHT, HT-mixed, and non-HT PPDU fields.

VHT Packet Recovery
This example shows how to recover contents from a VHT format waveform.

Generate 80 MHz VHT Waveform

Create a VHT configuration object. Set APEPLength to 3200 and MCS to 5. Later these
settings are compared to recovered signal information. Create a transmission bit stream
for the data field. For a VHT waveform, the data field is PSDULength*8 bits.

vht = wlanVHTConfig('APEPLength',3200,'MCS',5);
txBits = randi([0 1],vht.PSDULength*8,1);

Create the PPDU fields individually. Create L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF,
VHT-LTF, and VHT-SIG-B preamble fields and the VHT-Data field.

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
vhtSigA = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
vhtSigB = wlanVHTSIGB(vht);
vhtData = wlanVHTData(txBits,vht);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; vhtSigA; vhtstf; vhtltf; vhtSigB; vhtData];

Pass VHT Waveform Through TGac SISO Channel

Create TGac SISO and AWGN channel objects.

chBW = vht.ChannelBandwidth;
fs = 80e6;
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',chBW,...
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    'LargeScaleFadingEffect','Pathloss and shadowing');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance,
noiseVar, is equal to kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth (sample rate), and F is the receiver noise figure.
Pass the transmitted waveform through the noisy TGac channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10)

noiseVar = 2.5438e-12

rxPPDU = awgnChan(tgacChan(txPPDU),noiseVar);

Recover VHT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and
correction, and symbol timing. For this example, the carrier frequency is not offset and
the packet timing is 'on-time'. Therefore, for accurate demodulation, determination of
carrier frequency offset and symbol timing is not required.

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(vht)

fieldInd = struct with fields:
       LSTF: [1 640]
       LLTF: [641 1280]
       LSIG: [1281 1600]
    VHTSIGA: [1601 2240]
     VHTSTF: [2241 2560]
     VHTLTF: [2561 2880]
    VHTSIGB: [2881 3200]
    VHTData: [3201 12160]

The stop index of VHT-SIG-B indicates the preamble length in samples.

numSamples = fieldInd.VHTSIGB(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to
delineate the packet field boundaries.

time = ([0:double(numSamples)-1]/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));
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fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSIGA(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSIGB(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('VHT Format Preamble')

Demodulate the L-LTF and estimate the channel.
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rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,vht);

Extract the L-SIG field from the received PPDU, recover its information bits and check the
CRC.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
[recLSIG,failCRC] = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,chBW);
failCRC

failCRC = logical
   0

failCRC = 0 indicates that CRC passed.

For the VHT format, the L-SIG rate bits are constant and set to [1 1 0 1]. Inspect the L-
SIG rate information and confirm that this constant sequence is recovered. For the VHT
format, the MCS setting in VHT-SIG-A2 determines the actual data rate.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

   1   1   0   1

Extract the VHT-SIG-A and confirm that the CRC check passed.

rxVHTSIGA = rxPPDU(fieldInd.VHTSIGA(1):fieldInd.VHTSIGA(2),:);
[recVHTSIGA,failCRC] = wlanVHTSIGARecover(rxVHTSIGA, ...
    chEstLLTF,noiseVar,chBW);
failCRC

failCRC = logical
   0

Extract the MCS setting from the VHT-SIG-A. For single user VHT, the MCS is located in
VHT-SIG-A2 bits 4 through 7.

recMCSbits = (recVHTSIGA(29:32))';
recMCS = bi2de(double(recMCSbits))

recMCS = 5
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isequal(recMCS,vht.MCS)

ans = logical
   1

The recovered MCS setting matches the MCS value in the configuration object.

Extract and demodulate the VHT-LTF. Use the demodulated signal to perform channel
estimation. Use the channel estimate to recover the VHT-SIG-B and VHT-Data fields.

rxVHTLTF = rxPPDU(fieldInd.VHTLTF(1):fieldInd.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract and recover the VHT-SIG-B.

rxVHTSIGB = rxPPDU(fieldInd.VHTSIGB(1):fieldInd.VHTSIGB(2),:);
recVHTSIGB = wlanVHTSIGBRecover(rxVHTSIGB,chEstVHTLTF,noiseVar,chBW);

As described in IEEE Std 802.11ac-2013, Table 22-1, the value in the VHT-SIG-B Length
field multiplied by 4 is the recovered APEP length for packets carrying data. Verify that
the APEP length, contained in the first 19 bits of the VHT-SIG-B, corresponds to the
specified APEP length.

sigbAPEPbits = recVHTSIGB(1:19)';
sigbAPEPlength = bi2de(double(sigbAPEPbits))*4

sigbAPEPlength = 3200

isequal(sigbAPEPlength,vht.APEPLength)

ans = logical
   1

The recovered value matches the configured APEP Length.

Recover VHT-Data Contents from PPDU

Construct a recovery configuration object.

cfgRec = wlanRecoveryConfig;

Recover receive equalized symbols using channel estimates from VHT-LTF.
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recPSDU = wlanVHTDataRecover(rxPPDU(fieldInd.VHTData(1):fieldInd.VHTData(2),:),...
    chEstVHTLTF,noiseVar,vht,cfgRec);

Compare transmission and receive PSDU bits.

numErr = biterr(txBits,recPSDU)

numErr = 0

The number of bit errors is zero.

HT Packet Recovery
This example shows how to recover content from a HT format waveform.

Generate 20 MHz HT Waveform

Create an HT configuration object and transmission PSDU. Set MCS to 2. Later these
settings are compared to recovered signal information. For an HT waveform, the data
field is PSDULength*8 bits.

ht = wlanHTConfig('MCS',2);
txPSDU = randi([0 1],ht.PSDULength*8,1);

Create the PPDU fields individually. Create L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, and HT-
LTF preamble fields and the HT-Data field.

lstf = wlanLSTF(ht);
lltf = wlanLLTF(ht);
lsig = wlanLSIG(ht);
htsig = wlanHTSIG(ht);
htstf = wlanHTSTF(ht);
htltf = wlanHTLTF(ht);
htData = wlanHTData(txPSDU,ht);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; htsig; htstf; htltf; htData];

Pass HT Waveform Through TGn SISO Channel

Create TGn SISO channel and AWGN channel objects.
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fs = 20e6;
tgnChan = wlanTGnChannel('SampleRate',fs,'LargeScaleFadingEffect','Pathloss and shadowing');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance,
noiseVar, is equal to kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth (sample rate), and F is the receiver noise figure.
Pass the transmitted waveform through the noisy TGn channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(tgnChan(txPPDU),noiseVar);

Recover HT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and
correction, and symbol timing. For this example, the carrier frequency is not offset and
the packet timing is 'on-time'. Therefore, for accurate demodulation, determination of
carrier frequency offset and symbol timing is not required.

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(ht)

fieldInd = struct with fields:
      LSTF: [1 160]
      LLTF: [161 320]
      LSIG: [321 400]
     HTSIG: [401 560]
     HTSTF: [561 640]
     HTLTF: [641 720]
    HTData: [721 9200]

The stop index of HT-LTF indicates the preamble length in samples.

numSamples = fieldInd.HTLTF(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to
delineate the packet field boundaries.

time = ([0:double(numSamples)-1]/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));
fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
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fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.HTSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.HTSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.HTLTF(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('HT Format Preamble')

Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,ht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,ht);
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Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
[recLSIG,failCRC] = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,ht.ChannelBandwidth);
failCRC

failCRC = logical
   0

failCRC = 0 indicates that CRC passed.

For the HT format, the L-SIG rate bits are constant and set to [1 1 0 1]. Inspect the L-
SIG rate information and confirm that this constant sequence is recovered. For the HT
format, the MCS setting in HT-SIG determines the actual data rate.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

   1   1   0   1

Extract the HT-SIG and confirm that the CRC check passed.

recHTSIG = rxPPDU(fieldInd.HTSIG(1):fieldInd.HTSIG(2),:);
[recHTSIG,failCRC] = wlanHTSIGRecover(recHTSIG,chEstLLTF,noiseVar,ht.ChannelBandwidth);
failCRC

failCRC = logical
   0

Extract the MCS setting from the HT-SIG. For HT, the MCS is located in HT-SIG bits 0
through 6.

recMCSbits = (recHTSIG(1:7))';
recMCS = bi2de(double(recMCSbits))

recMCS = 2

isequal(recMCS,ht.MCS)

ans = logical
   1
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The recovered MCS setting matches the MCS value in the configuration object.

Extract and demodulate the HT-LTF. Use the demodulated signal to perform channel
estimation. Use the channel estimate to recover the HT-Data field.

rxHTLTF = rxPPDU(fieldInd.HTLTF(1):fieldInd.HTLTF(2),:);
demodHTLTF = wlanHTLTFDemodulate(rxHTLTF,ht);
chEstHTLTF = wlanHTLTFChannelEstimate(demodHTLTF,ht);

Recover HT-Data Contents from PPDU

Create a recovery configuration object.

cfgRec = wlanRecoveryConfig;

Recover the received equalized symbols using channel estimates from the HT-LTF.

[recPSDU] = wlanHTDataRecover(rxPPDU(fieldInd.HTData(1):fieldInd.HTData(2),:),...
    chEstHTLTF,noiseVar,ht,cfgRec);

Compare the transmitted and received PSDU bits, and confirm that the number of bit
errors is zero.

numErr = biterr(txPSDU,recPSDU)

numErr = 0

Non-HT Packet Recovery
This example steps through recovery of non-HT format waveform content.

Generate 20 MHz Non-HT Waveform

Create a non-HT configuration object and transmission PSDU. Set MCS to 4. Later these
settings are compared to recovered signal information. For a non-HT waveform, the data
field is PSDULength*8 bits.

nht = wlanNonHTConfig('MCS',4);
txPSDU = randi([0 1],nht.PSDULength*8,1);

Create the PPDU fields individually. Use the non-HT-Data contents to check the bit error
rate after recovery. Create L-STF, L-LTF, and L-SIG preamble fields and non-HT data field.

lstf = wlanLSTF(nht);
lltf = wlanLLTF(nht);
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lsig = wlanLSIG(nht);
nhtData = wlanNonHTData(txPSDU,nht);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; nhtData];

Pass Non-HT Waveform Through 802.11g SISO Channel

Calculate the free-space path loss for a transmitter-to-receiver separation distance of 3
meters. Create an 802.11g channel with a 3 Hz maximum Doppler shift and an RMS path
delay equal to two times the sample time. Create an AWGN channel.

dist = 3;
pathLoss = 10^(-log10(4*pi*dist*(2.4e9/3e8)));
fs = 20e6;
trms = 2/fs;
maxDoppShift = 3;
ch802 = comm.RayleighChannel('SampleRate',fs,'MaximumDopplerShift',maxDoppShift,'PathDelays',trms)

ch802 = 
  comm.RayleighChannel with properties:

             SampleRate: 20000000
             PathDelays: 1.0000e-07
       AveragePathGains: 0
     NormalizePathGains: true
    MaximumDopplerShift: 3
        DopplerSpectrum: [1x1 struct]

  Show all properties

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance,
noiseVar, is equal to kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth (sample rate), and F is the receiver noise figure.
Pass the transmitted waveform through the noisy, lossy 802.11g channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(ch802(txPPDU),noiseVar) * pathLoss;
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Recover Non-HT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and
correction, and symbol timing. For this example, the carrier frequency is not offset and
the packet timing is 'on-time'. Therefore, for accurate demodulation, determination of
carrier frequency offset and symbol timing is not required.

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(nht)

fieldInd = struct with fields:
         LSTF: [1 160]
         LLTF: [161 320]
         LSIG: [321 400]
    NonHTData: [401 7120]

The stop index of the L-SIG field indicates the preamble length in samples.

numSamples = fieldInd.LSIG(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to
delineate the packet field boundaries.

time = ((0:double(numSamples)-1)/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));
fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1)  = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('Non-HT Format Preamble')
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Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,nht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,nht);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
recLSIG = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,'CBW20');

The first four bits of the L-SIG field, bits 0 through 3, contain the rate information.
Confirm that the sequence [1 0 0 1] is recovered. This sequence corresponds to the 24
MHz data rate for the non-HT MCS setting of 4.
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rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

   1   0   0   1

Extract and demodulate the L-LTF. Use the demodulated signal to perform channel
estimation. Use the channel estimate to recover the non-HT-Data field.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,nht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,nht);

Recover Non-HT-Data Contents from PPDU

Create a recovery configuration object, with its equalization method set to zero forcing.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover equalized symbols using channel estimates from HT-LTF.

rxPSDU = rxPPDU(fieldInd.NonHTData(1):fieldInd.NonHTData(2),:);
[recPSDU,~,eqSym] = wlanNonHTDataRecover(rxPSDU,chEstLLTF,noiseVar,nht,cfgRec);

Compare the transmitted and received PSDU bits, and confirm that the number of bit
errors is zero.

numErr = biterr(txPSDU,recPSDU)

numErr = 0

See Also
wlanHTConfig | wlanNonHTConfig | wlanRecoveryConfig | wlanVHTConfig

Related Examples
• “WLAN Channel Models” on page 2-40
• “What Is WLAN?” on page 3-2
• “Build VHT PPDU”
• “Build HT PPDU”
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• “Build Non-HT PPDU”
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About WLAN

• “What Is WLAN?” on page 3-2
• “WLAN Radio Frequency Channels” on page 3-11
• “Acknowledgments” on page 3-14
• “Terminology” on page 3-15
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What Is WLAN?
In general, a wireless local area network (WLAN) refers to a wireless computer network.
More commonly, WLAN is equated with the implementation specified by the IEEE
802.1123 group of standards and branded as Wi-Fi® by the Wi-Fi Alliance. The Wi-Fi
Alliance certifies interoperability between IEEE 802.11 devices from different
manufacturers. WLAN Toolbox functionality enables you to model IEEE 802.11
standardized implementations of the WLAN physical layer (PHY). It also enables you to
explore variations on implementations for future evolution of the standard.

In this section...
“Network Architecture” on page 3-2
“WLAN Protocol Stack” on page 3-4
“WLAN Protocol Layers” on page 3-4
“Physical Layer Evolution” on page 3-7

Network Architecture
IEEE 802.11 defines the network architectures. In IEEE 802.11, a group of stations
(STAs) within a defined coverage area and with appropriate association to each other
form a basic service set (BSS). The BSS is a basic building block for 802.11 network
architecture. A basic service area (BSA) defines an area containing STAs within a BSS.
STAs can be associated in overlapping BSSs. In terms of mobility, STAs are either fixed,
portable, or mobile. Any compliant STA can serve as an access point (AP).

The figure depicts WLAN components and network architectures built up from BSSs.

2. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

3. IEEE Std 802.11ac™-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.
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• Independent BSS (IBSS) describes STAs communicating directly with one another in
an ad-hoc fashion. An IBSS has no connection to the wired network.

• Infrastructure BSS describes STAs associated with a central STA that manages the
BSS. The central STA is referred to as an access point (AP). This deployment is
commonly used in home, office, and hotspot network installations. Generally speaking,
the AP connects wirelessly with associated STAs and is wired to the Internet. This
connection enables associated STAs to communicate beyond the local BSS. The APs
also wirelessly serve STAs in a BSA, providing internet connectivity for those STAs.

• Distributed systems (DS) interconnect infrastructure BSSs via their APs. Typically the
DS backbone is an 802.3 Ethernet LAN.
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• Extended service set (ESS) describes a set of infrastructure BSSs interconnected by a
DS. In an ESS, APs communicate among themselves to forward traffic from one BSS to
another and to facilitate the movement of mobile station from one BSS to another.

WLAN Protocol Stack
The interworking reference model shown here includes a subset of the network
components associated with the data link layer (DLL) and physical layer (PHY). IEEE Std
802.11-2012 [3], Section 4.9.2 describes the interworking reference model for 802.11. the
medium access control (MAC) is a sublayer of the DLL.

The 802.11 standards focus on the MAC and PHY as a whole. The WLAN Toolbox PHY
modeling functionality focuses on the physical medium dependent (PMD) and the physical
layer convergence procedure (PLCP) sublayers of the PHY, and their interfaces.

WLAN Protocol Layers
Data and control information messages are exchanged between layers of the protocol
stack within an individual STA and between peer layers in communicating STAs.
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• Data and control information exchanged between peer STA layers are protocol
information transfers. See MPDU and PPDU in the figure.

• Data and control information exchanged between layers within an STA are service
information transfers. See MSDU and PSDU in the figure.

WLAN Toolbox functionality focuses on PHY implementations and the exchange of PPDUs
between PHY peers. Messages exchanged between protocol stack layers are briefly
described here. For more information on these messages, see IEEE Std 802.11-2012 [3].

Message Description
MSDU — MAC service data unit Messages that transfer information

between the logical link control (LLC) layer
and the MAC layer within an STA
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Message Description
MPDU — MAC protocol data unit Messages that transfer information

between MAC layer peers in
communicating STAs

PSDU — PLCP service data unit Messages that transfer information
between the MAC and PHY layers within an
STA

PPDU — PLCP protocol data unit Messages that transfer information
between PHY layer peers in communicating
STAs

This figure shows the distinction between these WLAN message data units for a
nonaggregated MAC frame.

Note In reference to PSDU, the terms PLCP SDU and PHY SDU appear in the 802.11
standard. PLCP is the physical layer convergence procedure sublayer of the PHY. No
distinction is made when the terms are used between layers.
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Physical Layer Evolution
The IEEE 802.11 standardized implementation of WLAN has evolved since its first release
in 1997. Today, it is deployed worldwide in unlicensed regions of the radio frequency
spectrum. Since the first release, the 802.11 standard has progressed to include several
physical layer implementations and has ensured backward compatibility with legacy
releases. Over time, the maximum achievable transmission data rate has grown from 1
Mbps to nearly 7 Gbps.

WLAN Toolbox provides native support for the various 802.11 standard versions listed
here. The toolbox focuses on the physical layer and enables adaptation of standards-based
functionality to explore custom implementations.

Standard Release
Year

Modulati
on

Base
Frequenc
y (GHz)

Bandwidt
h (MHz)

Maximum
Throughp
ut (Mbps)

Antenna
Scheme

PPDU
Format

802.11 1997 DSSS 2.4 11 2 SISO non-HT
802.11b™ 1999 HR/

DSSS/CCK
2.4 11 11 SISO non-HT

802.11a™ 1999 OFDM 5 5, 10, 20 54 SISO non-HT
802.11g™ 2003 802.11b and 802.11a @ 2.4 GHz
802.11j™ 2004 OFDM 4.9 and 5 10, 20 27 SISO non-HT
802.11n™ 2009 OFDM 2.4 and 5 20, 40 < 600 MIMO, up

to four
streams

HT

802.11p™ 2010 OFDM 5 5, 10 27 SISO non-HT
802.11ad
™

2012 SC/OFDM 60 GHz 1760 (SC),
2640
(OFDM)

< 7000 MIMO
single
stream
with
beamform
ing

DMG

802.11ac 2013 OFDM 5 20, 40, 80,
160, 80+8

< 7000 DL MU-
MIMO up
to eight
streams

VHT
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Standard Release
Year

Modulati
on

Base
Frequenc
y (GHz)

Bandwidt
h (MHz)

Maximum
Throughp
ut (Mbps)

Antenna
Scheme

PPDU
Format

802.11ah
™

2016 OFDM < 1 1, 2, 4, 8,
16

346 DL MU-
MIMO up
to four
streams

S1G

802.11ax
™

2019
(anticipate
d)

OFDMA 2.4 and 5 20, 40, 80,
160, 80+8

< 10,000 UL and
DL MU-
MIMO up
to eight
streams

HE

Deployment and commercial uptake grew with the increased data rates offered by
802.11b direct sequence spread spectrum (DSSS) with complementary code keying
(CCK). At that time, companies began offering 802.11b products and systems for WLAN.

The 802.11a amendment increased data rates by introducing an orthogonal frequency
division multiplexing (OFDM) physical layer. However, OFDM was deployed at only 5
GHz, so uptake was slow. A short time later, the FCC allowed the use of OFDM at 2.4
GHz. The adoption of the 802.11g amendment offered the opportunity to operate the PHY
defined by 802.11a at 2.4 GHz, with backward compatibility to the 802.11b PHY.

With 802.11n, a data rate increase came by way of widened channel bandwidth and
allowance of up to four input/output streams. For 802.11ac, wider channels and up to
eight input/output streams offers higher maximum throughputs. This increased
throughput capability enables users to stream video to mobile devices in the home or at
public mobile hot spots.

The 802.11ad amendment specifies operation in the 2.4, 5 and 60 GHz bands. The
802.11ah amendment uses sub 1 GHz frequencies (unlicensed 900 MHz bands) to provide
extended range, and has low energy consumption to support the concepts involving the
Internet of Things (IoT). The 802.11ax amendment introduces OFDMA to improve overall
spectral efficiency, and higher order 1024 QAM modulation support for increased
throughput. The demand for bandwidth continues to grow and the IEEE 802.11 working
groups continue to advance standards to raise the throughput ceiling.

For the history of IEEE 802.11 and to monitor working group activities, consult the IEEE
website [1].
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See Also

Related Examples
• “Create Configuration Objects” on page 2-2
• “Waveform Generation” on page 2-18
• “WLAN Channel Models” on page 2-40
• “Packet Recovery” on page 2-52
• “WLAN Packet Structure”

External Websites
• https://standards.ieee.org/
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WLAN Radio Frequency Channels
WLAN operates in unlicensed radio frequency (RF) spectrum allocated by governing
bodies in individual countries for signal transmissions. Appropriate regulatory bodies
specify maximum allowable output power.

Refer to IEEE Std 802.11-2016, Annex E for detailed description of country information,
operating classes, and behavior limits. The discussion here is restricted to identification
of the WLAN operating frequency channel designations.

In general, the 2.4 GHz and 5 GHz bands of operation designate channels spaced 5 MHz
apart, with noted exceptions. As an example, the 2.4 GHz band designates channels 1
through 13 spaced 5 MHz apart plus a 14th channel 12 MHz from channel 13. Defined
WLAN channel bandwidths are greater than 5 MHz, therefore cross-channel interference
limits the number of designated usable channels. Access point deployments manage
interference from neighboring cells by operating on non-overlapping channels. In the
United States, the 2.4 GHz band designated usable non-overlapping channels are 1, 6,
and 11.

The channel center frequency, FCENTER, is calculated using the starting frequency, FSTART,
and the channel number.

FCENTER in MHz = FSTART + (5×Channel Number)

Example: Determine the center frequency for channel number 6 in the 2.4 GHz band.

FCENTER in MHz = 2407 + (5×6) = 2437 MHz.
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802.11 channels
Channel Number FSTART, Starting Frequency Comments
1, ..., 13 2407 MHz For country and release

specific restrictions, refer to
—

• IEEE Std 802.11-2012
[2]

• IEEE Std 802.11ac-2013
[3]

14 2414 MHz
132, 133, 134, 136, 137, 138 3000 MHz
131, ..., 138 3002.5 MHz
183, ..., 197 4000 MHz
182, ..., 189 4002.5 MHz
21, 25 4850 MHz
11, 13, 15, 17, 19 4890 MHz
1, ..., 10 4937.5 MHz
7, ..., 12, 16

34, ..., 60 in increments of 2

64

100, 104, 106, 108

112, 114, 116

120, 122, 124, 128

132, 136, 138

140, 144, 149

153, 155, 157

161, 165, 169

171, ..., 184 in increments of
1

5000 MHz

6, ..., 11

170, ..., 184 in increments of
1

5002.5 MHz
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802.11 channels
Channel Number FSTART, Starting Frequency Comments
1, 2, 3, 4 56.16 GHz For country and release

specific restrictions, refer to
—

• IEEE Std 802.11ad-2012
[4]
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